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We calculate the transmission of electrons and holes between two normal-metal �N� electrodes, separated
over a distance L by an impurity-free superconductor �S� with d-wave symmetry of the order parameter. Nodal
lines of vanishing excitation gap form ballistic conduction channels for coupled electron-hole excitations,
described by an anisotropic two-dimensional Dirac equation. We find that the transmitted electrical and thermal
currents both have the pseudodiffusive 1 /L scaling characteristic of massless Dirac fermions—regardless of the
presence of tunnel barriers at the NS interfaces. Tunnel barriers reduce the slope of the 1 /L scaling in the case
of the electrical current while leaving the thermal current unaffected.
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I. INTRODUCTION

Pseudodiffusive transmission refers to the 1 /L scaling of
the electrical current transmitted over a distance L through a
clean sheet of undoped graphene.1 The name refers to diffu-
sion in a random potential, which exhibits the same 1 /L
scaling but for a completely different physical reason �in
graphene, the 1 /L scaling is a consequence of transmission
via evanescent modes�. There is a large number of
theoretical2–12 and experimental13–15 studies of this phenom-
enon, which is understood as a general property of massless
Dirac fermions in the limit of vanishing excitation energy.
The optical analog in a photonic crystal with a Dirac spec-
trum has been studied as well.16–19

Layered superconductors with a d-wave symmetry of the
order parameter �notably the high-Tc cuprates20� form an al-
together different system in which massless Dirac fermions
are known to exist.21–23 These are so-called nodal fermions,
located in the two-dimensional Brillouin zone near the inter-
sections �nodal points� of the Fermi surface with lines �nodal
lines� of vanishing excitation gap. Elastic mean free paths l
as large as 4 �m have been reached in YBa2Cu3O7−� single
crystals,24 much larger than the superconducting coherence
length �0�2 nm. It is the purpose of this work to demon-
strate theoretically the pseudodiffusive 1 /L scaling of the
transmission through a d-wave superconductor over the
range of lengths between �0 and l. This anomalous scaling
was not noticed in earlier studies of similar systems.25–27

The problem is interesting from a conceptual point of
view because it highlights both the differences and similari-
ties between Dirac fermions produced by a band structure �as
in graphene or photonic crystals� or produced by a d-wave
order parameter. In undoped graphene, the transmitted elec-
trical current I in response to a voltage difference V scales
as2,3

I =
4e2

h
V

W

�L
. �1.1�

The length L over which the current is transmitted should be
large compared to the Fermi wavelength �F in the metal
contacts but small compared to the mean-free path l. The
length L should also be small compared to the transverse

width W of the graphene sheet, to avoid edge effects. Poten-
tial barriers �smooth on the scale of the lattice constant� at
the interfaces between the metal contacts and the graphene
sheet have no effect on the current because of the phenom-
enon of Klein tunneling.10

For the d-wave superconductor, we find a transmitted
electrical current per layer equal to

I =
2e2

h
V

W

�L

vF
2 + v�

2

vFv�

	1

�2 − 	1�
	2

�2 − 	2�
�1.2�

for �0
L
 l ,W. Here 	1,2� �0,1� are the tunnel probabili-
ties through the potential barriers at the two normal-metal-
superconductor �NS� interfaces. The Dirac equation for nodal
fermions is anisotropic,21 with different velocities vF and v�

parallel and perpendicular to the nodal lines. This anisotropy
�with vF /v��15 in YBa2Cu3O7−�� increases the slope of the
1 /L scaling. Remarkably enough, the anisotropy does not
introduce a dependence of the transmitted current on the
angle � between the direction of the current and the nodal
lines. The result �1.2� holds generically for any orientation,
except for a narrow range of angles of order �0 /L around
�=0�mod � /4�.

The tunnel barriers reduce the slope of the 1 /L scaling of
the transmitted electrical current �Eq. �1.2��, by a factor
	1	2 /4 for small tunnel probabilities. This does not imply
that the nodal fermions are only weakly transmitted but
rather that the transmission probabilities for transmission as
an electron or as a hole are almost the same for 	1,2
1.
Indeed, we find that the electrical shot-noise power P as well
as the transmitted thermal current Ithermal �both of which do
not depend on the sign of the carriers charge� remain finite in
the limit 	1,2→0. We interpret this result in terms of a reso-
nant coupling of the midgap states28,29 extended along the
two NS interfaces. We also find, quite surprisingly, that the
thermal conductivity is independent of the tunnel probabili-
ties 	1,2.

The outline of this paper is as follows. In Sec. II we
formulate the scattering problem and calculate the transfer
matrix of the nodal Dirac fermions through the d-wave su-
perconductor. The matching of wave functions at the inter-
face with the metal electrodes is done in Sec. III, both for
ideal NS interfaces and for interfaces containing a tunnel
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barrier. The transmission matrix of electrons and holes fol-
lows in Sec. IV. We then apply this result to the calculation
of transport properties: the electrical current �Sec. V�, the
thermal current �Sec. VI�, and the electrical shot noise �Sec.
VII�. We conclude in Sec. VIII with a discussion of our
results and an outlook.

II. TRANSFER MATRIX FOR NODAL FERMIONS

A. Anisotropic Dirac equation

We consider a two-dimensional spin-singlet supercon-
ductor �S�, connecting two normal-metal �N� contacts with
parallel NS interfaces, separated by a distance L. The trans-
verse dimension W of the superconducting strip �in the x-y
plane� is assumed to be large compared to L, in order to
avoid edge effects. The order parameter ��k� is assumed to
have dxy symmetry; it vanishes for wave vectors along two
nodal lines, which are taken to be the x and the y axes. All
our results also apply to dx2−y2 superconductors, for our pur-
poses, a simple � /4 rotation relates the two systems. To be
specific, the x-y plane can represent a single CuO2 layer of a
cuprate superconductor,20 with the �100� direction at an angle
� /4.

Low-energy excitations in the superconductor are found
in the Brillouin zone near the four intersections ��kF ,0�,
�0, �kF� of the Fermi surface with the nodal lines of the
order parameter. �These nodal points are labeled A ,B ,C ,D
in Fig. 2.� Around these points, both the pair potential ��k�
and the kinetic energy can be linearized; the dynamics of the
nodal fermions is governed by an anisotropic Dirac
equation.21–23 For example, near node A at �kF ,0� this can be
written in the form

�− ivF�x − iv��y

− iv��y ivF�x
��e

h
� = ��e

h
� �2.1�

or more compactly with the help of Pauli matrices,

− i�vF�z�x + v��x�y� = � . �2.2�

We have set � to unity, restoring units in the final expres-
sions. The spinor = �e ,h� contains the envelope wave
functions of electron and hole excitations �slowly varying on
the scale of the Fermi wavelength �F=2� /kF�. The Fermi
velocity vF is larger than the velocity v�=�0 /�kF by a factor
of order �0 /�F �with �0=�vF /�0 the superconducting coher-
ence length�, which is in the range 10–20 for cuprate super-
conductors. The equal-energy contours in the Brillouin zone
of the nodal fermions thus have an elongated ellipsoidal
shape,

���k� = 	�vF�kx�2 + �v��ky�2, �2.3�

as a function of the displacement �k of the wave vector from
the nodal point.

B. Transfer matrix

Since the system is translation invariant along the NS in-
terfaces, the component of the wave vector along these inter-
faces, q=−�kx sin �+�ky cos �, is a conserved quantity.

Here � is the angle between the normal to the NS interface
and the nodal line pointing to node A, which we restrict to
−� /4���� /4 without loss of generality. Moreover, since
mirror reflection along the NS interface, followed by the
transformation ��k�→−��k� while leaving all the other pa-
rameters unchanged, maps � on −�, we can further restrict �
to 0���� /4. In all our formulas, to obtain the correspond-
ing formulas for −�, replace q by −q and v� by −v�.

We write �r�=�s�eiqs�, with s� �0,L� the coordinate
perpendicular to the NS interfaces and s� the coordinate par-
allel to them. We substitute �r� into Eq. �2.1� and find that
the spinor �s� satisfies the wave equation

�− iJ�s + J1q��s� = ��s� , �2.4�

where �s is differentiation perpendicular to the NS interface,
and J and J1 are the operators of particle current perpendicu-
lar and parallel to the NS interface,

J = vF�z cos � + v��x sin � , �2.5�

J1 = v��x cos � − vF�z sin � . �2.6�

We note that the operator J squares to a scalar, its magnitude
giving the particle velocity v� perpendicular to the NS inter-
face,

v�
2 = J2 = vF

2 cos2 � + v�
2 sin2 � . �2.7�

To solve Eq. �2.4�, we multiply it by J /v�
2 and rearrange to

obtain

�s�s� = iA0�s� �2.8�

with

A0 = q
sin 2�

2

vF
2 − v�

2

v�
2 +

�

v�
2 J − iq

vFv�

v�
2 �y . �2.9�

The solution to Eq. �2.4� can then be written as

�s0 + s� = Ms�s0�; Ms = exp�iA0s� , �2.10�

where the second equation defines the transfer matrix Ms.
As expected, the particle current J is conserved by Eq. �2.4�,
�s�†�s�J�s��=†�s��−iA0

†J+ iJA0��s�=0.

III. WAVE MATCHING AT THE NS INTERFACES

At the two NS interfaces the coupled electron-hole exci-
tations in the superconductor are converted into uncoupled
electrons and holes in the normal metal. We thus need to
match, at s=0 and s=L, the envelope wave functions 
= �e ,h� of the nodal fermions in S to the Bloch wave
functions �= ��e ,�h� of free fermions in N. This is similar
to the matching of Dirac equation to Helmholtz equation
considered in the context of transmission through a photonic
crystal.16 Translational invariance parallel to the NS inter-
faces requires that the coupling conserve the wave-vector
component q parallel to the interfaces. Particle flux conser-
vation imposes further constraints, as we determine here.

A. Particle flux conservation at the NS interface

At the surface of the superconductor, the order parameter
� attains its bulk value over a short length scale, the healing
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length l0. The two-component wave function on the S side of
the interface �at s= l0� can be linked to that on the N side
�s=0� by an interface matrix MNS, defined by

�l0� = MNS�0� . �3.1�

In the normal metal, the operator of particle flux perpendicu-
lar to the NS interface can be written as

jN = vN�z �3.2�

with vN possibly different from vF cos � because of a Fermi
energy mismatch. The requirement of particle flux conserva-
tion reads

�0�†vN�z�0� = �0�†MNS
† JMNS�0� . �3.3�

To derive the most general form of the interface matrix ful-
filling this requirement, notice that a unitary rotation through
angle �, where

� = arctan
v�

vF
tan �� �3.4�

transforms J into �z up to a scalar factor,

v��z = exp�i��y/2�J exp�− i��y/2� . �3.5�

This allows us to write the interface matrix as

MNS =	vN

v�

exp�− i��y/2�M0, �3.6�

where M0 is a 2�2 matrix fulfilling a generalized unitarity
condition,

M0
−1 = �zM0

†�z. �3.7�

Equation �3.7� restricts M0 to a three-parameter form

M0 = e�x�xe�y�yei�z�z �3.8�

�ignoring an irrelevant scalar phase factor�, with arbitrary
real parameters �x ,�y ,�z. To understand better where the
nontrivial interface matrix arises from, and to show that we
may set �x=�y =�z=0, we have to extend the Dirac equation
�Eq. �2.4�� to the interface layer, where v� varies in space.
This is done in Appendix A.

So far we have considered only intranode scattering at the
NS interface. We refer to such an interface as an “ideal in-
terface.” A nonideal interface contains a tunnel barrier, which
introduces internode scattering. We will consider the transfer
matrices through the d-wave superconductor for both cases
in the next two sections.

B. Transfer matrix with ideal NS interfaces

The complete transfer matrix for a strip of d-wave super-
conductor with ideal NS interfaces reads

Mideal = MNS
−1 MLMNS, �3.9�

where ML is the Ms from Eq. �2.10� with s=L, describing
propagation inside the superconductor, and MNS from Eq.
�3.6�, with M0=1, describes an NS interface. Upon substi-
tution, we obtain

Mideal = ei���q� exp� iL�

v�

�z + qL
vFv�

v�
2 �y�

= ei���q�
cosh����q�L�

+
sinh����q�L�

v�
2���q�

�i�v��z + qvFv��y�� �3.10�

with the definitions

���q� = 	�qvFv�/v�
2�2 − ��/v��2, �3.11�

���q� = qL
vF

2 − v�
2

v�
2

sin 2�

2
. �3.12�

Notice, how—as a result of accounting for the two NS
interfaces—the transfer matrix has simplified from that of
Eq. �2.10�. The change is that the particle flux operator J in
Eq. �2.9� is replaced by v��z in Eq. �3.10�. Also note that the
determinant of the transfer matrix has norm one,
Det Mideal=e2i���q�, as required by the generalized unitarity
relation

M−1 = �zM†�z, �3.13�

which holds for any transfer matrix as a consequence of par-
ticle current conservation.

To appreciate the effects of the Dirac cone anisotropy, we
can perform a linear transformation on our system to obtain
one with an isotropic Dirac cone: contraction along the nodal
line by a factor v� /v� and expansion perpendicular to it by a
factor vF /v�. The dispersion of the new, isotropic Dirac cone
has a single velocity parameter v=vFv� /v�. The supercon-
ducting strip is deformed by the transformation: its width W
is unchanged but its length L becomes

L� = L
vFv�

v�
2 , �3.14�

an effective propagation length we define here for later use.
The matrix �3.10� derived above is the transfer matrix for

nodal fermions near point kA= �kF ,0 ,0� on the Fermi surface,
with q�qA= �k−kA� · �ẑ� n̂� the transverse wave-vector
component relative to kA. Similarly, the transfer matrices
near each of the four nodal points can be written as

MA = ei���qA� exp� iL�

v�

�z +
qALvFv�

v�
2 �y� , �3.15a�

MB = e−i��/2−��qB� exp� iL�

v�/2−�

�z −
qBLvFv�

v�/2−�
2 �y� ,

�3.15b�

MC = ei���qC� exp�−
iL�

v�

�z +
qCLvFv�

v�
2 �y� ,

�3.15c�
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MD = e−i��/2−��qD� exp�−
iL�

v�/2−�

�z −
qDLvFv�

v�/2−�
2 �y� .

�3.15d�

The basis at each nodal point is the same spinor ��e ,�h� but
the electron states �e are “right movers” �propagating from
N1 to N2� at nodal points A or B and “left movers” �from N2
to N1� at nodal points C and D.

C. Nonideal interfaces

The complete Fermi surface of the normal metal �N�
might differ in many ways from that of the superconductor.
However, when we study transport near a specific nodal
point, due to transverse momentum conservation, we can ef-
fectively reduce the Fermi surface to the two k points where
transverse momentum has the same value as at the nodal
point. These two k points in N each couple to different nodal
points in S, for example, to nodal points A and C in Fig. 2. A
nonideal NS interface couples these different nodal points,
by reversing the component of the momentum perpendicular
to the interface. Therefore, inside the superconductor we
need to consider two nodes—as detailed below—even if, in
the generic case, one of these does not conduct across the
system. The internode scattering may be caused by an insu-
lating layer at the NS interface or it may result from the
Fermi velocity mismatch between N and S. Note that only
internode scattering is possible in the absence of supercon-
ducting order—any intranode scattering has to happen inside
the superconductor.

We will generically describe a nonideal NS interface by a
tunnel barrier, with tunnel probability 	 �which we assume
mode independent for simplicity�. For ���0 /L, the tunnel
barrier couples electrons near nodal points A and C. The
transfer matrix M	�s0� for a tunnel barrier at position s0,
defined by

��e,A

�e,C
�

s0
+

= M	�s0���e,A

�e,C
�

s0
−

�3.16�

has the form

M	�s0� =	1

	
� 1 e−i��s0�	1 − 	

ei��s0�	1 − 	 1
�

�3.17�

with ��s�=2kFs cos �.
The tunnel barrier at s0 also couples holes near nodal

points A and C, with transfer matrix

��h,C

�h,A
�

s0
+

= M	
��s0���h,C

�h,A
�

s0
−
. �3.18�

�The basis states are chosen such that the upper component is
a right mover and the lower component a left mover.�

Finally, we can write down the full transfer matrix of the
superconducting strip, in the basis ��e,A ,�h,A ,�e,C ,�h,C�,
including nonideal contacts with tunneling probabilities 	1 at
s=0 and 	2 at s=L. It is obtained by matrix multiplication,

M = V�M	2
�L� 0

0 M	2

� �L� �V†�MA 0

0 MC
� · V�M	1

�0� 0

0 M	1

� �0� �V† �3.19�

with V a unitary matrix that switches bases from
��e,A ,�e,C ,�h,C ,�h,A� to ��e,A ,�h,A ,�e,C ,�h,C�,

V =�
1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0
� . �3.20�

If � /4−���0 /L, the nodal point A is coupled to the nodal
point D so the above formulas still hold, with C replaced by
D.

If both ���0 /L and � /4−���0 /L, the tunnel barriers at
the interfaces do not couple nodal point A to any other nodal
points. Since we assume �0 /L
1, this case of misaligned
nodes is the generic case. In that case, any particle from node
A coming from the superconductor �S� and reflected off the
tunnel barrier back into S, will suffer Andreev reflection in
the superconductor and impinge back on the tunnel barrier.
For the small energies � we study, where the linearization in

a single valley holds, this Andreev reflection will have an
amplitude −i. We can formally assign a transfer matrix to this
process, however, as there is only reflection, no transmission,
it will be singular,

MAndreev = lim
z→�

e−z�y . �3.21�

Note that MAndreev is also the qC→−� limit of MC�qC� in
Eq. �3.15c� �up to an irrelevant phase factor�. Thus, Eq.
�3.19� is valid as it stands for misaligned nodes as well.

IV. TRANSMISSION AMPLITUDES

A. Ideal interfaces

Referring to the geometry of Fig. 1, a scattering state �for
a given value of q� has the form ��0�= �1,rhe� at the normal
side of the left NS interface and ��L�= �tee ,0� at the normal
side of the right NS interface. The complex number rhe is the
amplitude for Andreev reflection �from electron to hole� and
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the complex number tee is the amplitude for electron trans-
mission. We calculate this transmission amplitude using the
relation

tee = ��MA
−1�11�−1 = ��MA

†�11�−1, �4.1�

where the first equality follows from ��0�=MA
−1��L� and

the second equality from particle current conservation, Eq.
�3.13�.

Substitution of Eq. �3.15a� gives the expression

tee = ei���qA�
cosh����qA�L� −
i� sinh����qA�L�

v����qA� �−1

.

�4.2�

B. Nonideal interfaces

For nonideal interfaces we have to consider both the
transmission amplitude tee from electron to electron and the
transmission amplitude the from electron to hole. It is conve-
nient to define the 2�2 transmission matrix as

t = �tee teh

the thh
� , �4.3�

which contains also the transmission amplitudes teh and thh
from hole to electron and from hole to hole. This matrix t is
a 2�2 subblock of the 4�4 unitary scattering matrix S,
which we derive in Appendix B.

To obtain t from the 4�4 transfer matrix M, we make a
change of basis from the basis ��e,A ,�h,A ,�e,C ,�h,C� used
in Eq. �3.19� to a basis ��e,A ,�h,C ,�e,C ,�h,A� in which the
upper two components are right movers and the lower two
components are left movers. The change of basis is carried
out by the unitary matrix,

W =�
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0
� . �4.4�

We can then follow the same reasoning as in the previous
section, to conclude that t is determined by the 2�2 upper-
left block X11 of WMW†,

X11
† t = 1, �4.5�

cf. Eq. �4.1�.
Substitution of M from Eq. �3.19� gives, after some

algebra,

t† =
�	1	2�1/2

Z
� �MC�22 + ei��L��MA�22

	1 − 	1
	1 − 	2 − �MA�12

	1 − 	1 − e−i��L��MC�12
	1 − 	2

− �MC�21
	1 − 	1 − ei��L��MA�21

	1 − 	2 �MA�11 + e−i��L��MC�11
	1 − 	1

	1 − 	2
� , �4.6�

Z = 	1 − 	1
	1 − 	2�e−i��L� Det MC + ei��L� Det MA�

+ �MA�11�MC�22 + �MA�22�MC�11�1 − 	1��1 − 	2�

− �MA�12�MC�21�1 − 	1� − �MA�21�MC�12�1 − 	2� .

�4.7�

V. ELECTRICAL CURRENT

A. Ideal interfaces

Turning now to observable quantities, we will work in the
linear-response regime V→0, when the transmission ampli-
tudes may be evaluated at the Fermi level ��=0�.

The current I2
A �per layer� transmitted into metal contact

N2 through nodal point A is obtained by integrating the trans-
mission probability tee2 over qA,

I2
A = G0V

W

2�
� dqAtee2. �5.1�

�The conductance quantum G0=2e2 /h includes a twofold
spin degeneracy.� The integrand decays exponentially for
qA�v�

2 /vFv�L���0 /L�kF. For L��0 the effective integra-
tion range is much smaller than kF and may be extended to
��. Substituting Eq. �4.2� �for �=0� we arrive at

I2
A = G0V

W

L

v�
2

�vFv�

. �5.2�

As expected, the conductance of a single nodal point has the
same form as that of a single valley in a graphene strip, with
L replaced by the effective propagation length L� of Eq.
�3.14�.

FIG. 1. �Color online� Geometry to measure the transmission of
nodal fermions through a d-wave superconductor. A current I1 is
injected into the superconductor from metal contact N1 �at a voltage
V� and drained to ground via the superconductor �current IS� or via
a second metal contact N2 �current I2�. If the separation L of the
metal contacts is large compared to the superconducting coherence
length �0, the current I2 is predominantly due to transmission par-
allel to the nodal lines x=0 or y=0 of vanishing excitation gap.
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The current I2
B transmitted through nodal point B is given

by the same formula with v� replaced by v�−�/2. Because of
the identity

v�
2 + v�−�/2

2 = vF
2 + v�

2 , �5.3�

the total current I2= I2
A+ I2

B becomes independent of �. The
conductivity �ideal= �I2 /V��L /W� per layer for the case of
ideal NS interfaces is then equal to

�ideal = G0
vF

2 + v�
2

�vFv�

. �5.4�

As discussed in Sec. VIII A, Eq. �5.4� differs �by a factor
1+ �v� /vF�2� from the bulk electrical conductivity of Refs.
21 and 22.

B. Nonideal interfaces

For nonideal NS interfaces, tunnel barriers couple the
nodal points and the calculation of the current I2 becomes
more involved. In this section we treat the generic case of
misaligned nodal points. The case of �perfectly� aligned
nodal points is considered in Appendix C.

We first calculate the current through nodal point A. As
discussed in Sec. III C, we can substitute MC with MAndreev
of Eq. �3.21�, and using Eq. �4.6� we obtain the transmission
matrix �at �=0�,

tA
† =

		1	2

ei���qA�ZA
� � 1 − ie−i��L�	1 − 	2

i	1 − 	1 e−i��L�	1 − 	1
	1 − 	2

� ,

�5.5�

where the denominator ZA has the form

ZA = 		1�2 − 	1�	2�2 − 	2�cosh�L��qA − qpeak�� . �5.6�

Here L� is the effective propagation length �Eq. �3.14�� while
qpeak is the transverse wave number defined by

qpeak =
1

2L�

ln
 	1

2 − 	1

	2

2 − 	2
� . �5.7�

Both tee and the are peaked at qA=qpeak. This peak momen-
tum lies at the nodal point �qpeak=0� only for ideal interfaces.
In the presence of tunnel barriers the sign of qpeak is such that
the order parameter has opposite sign at the two intersections
of the line qA=qpeak with the Fermi surface.

Integration over qA of electron current minus hole current
gives the net �electrical� current,

I2
A = G0V

W

2�
�

−�

�

dqA��tA�ee2 − �tA�he2�

= G0V
W

L

v�
2

�vFv�

1

2 − 	1

	2

2 − 	2
. �5.8�

Similarly, for the current through nodal point C we take the
limit qA→� of Eq. �4.6� and obtain the transmission matrix,

tC
† =

		1	2

ei���qC�ZC
� �ei��L�	1 − 	1

	1 − 	2 i	1 − 	1

− iei��L�	1 − 	2 1
� ,

�5.9�

ZC = 		1�2 − 	1�	2�2 − 	2�cosh�L��qC + qpeak��
�5.10�

and then the current

I2
C = − G0V

W

L

v�
2

�vFv�

1 − 	1

2 − 	1

	2

2 − 	2
. �5.11�

Note the minus sign in the formula for I2
C. The current has

opposite sign to that at nodal point A since here holes rather
than electrons tunnel across the system to contact 2.

The total current �per layer� through nodal points A and C
becomes

I2
A + I2

C = G0V
W

L

v�
2

�vFv�

	1

2 − 	1

	2

2 − 	2
. �5.12�

Notice that this depends symmetrically on 	1 and 	2. To
understand where this arises from, consider a pair of incom-
ing electron states with qA=q and qC=−q. For these two
states, we find

�tA�ee2 − �tA�he2 + �tC�ee2 − �tC�he2

=
	1

2 − 	1

	2

2 − 	2

1

cosh2�L��q − qpeak��
,

which depends symmetrically on the parameters of the two
tunnel barriers.

Comparison with Eq. �5.2� reveals that each tunnel barrier
changes the sum of the current transmitted through a nodal
point and the one opposite to it in momentum space, its
time-reversed partner, by a factor of 	 / �2−	�. As in the case
of ideal NS contacts, the pair of nodal points B and D con-
tribute a same amount but with v� replaced by v�/2−�. The �
dependence again drops out of the total current I2= I2

A+ I2
B

+ I2
C+ I2

D. For the conductivity �= �I2 /V��L /W� per layer we
finally obtain

� = �ideal
	1

2 − 	1

	2

2 − 	2
. �5.13�

VI. THERMAL CURRENT

The conductivity �Eq. �5.13�� vanishes in the weak tun-
neling limit 	1 ,	2→0 because the electron and hole contri-
butions to the electrical current I2 then become equal but of
opposite sign. Electrons and holes contribute with the same
sign to the thermal current,

Ithermal = L0G0T�T
W

2�
�

−�

�

dq�tee2 + the2� �6.1�

with L0=�2kB
2 /3e2 the Lorenz number. The thermal current

flows from contact N1 at temperature T+�T into contact N2
at temperature T. �Equation �6.1� requires �T
T and T suf-
ficiently small that the transmission amplitudes may be
evaluated at the Fermi energy �=0.�

We consider the �generic� case of misaligned nodes. Sub-
stitution of the expressions for t from Sec. V B, and sum-
ming over the pair of nodal points A and C, we find that
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Ithermal
A + Ithermal

C = L0G0T�T
W

L

v�
2

�vFv�

. �6.2�

Quite surprisingly, this turns out to be independent of the
tunnel probabilities 	1 and 	2. Closer inspection shows that
the tunnel probabilities drop out of the sum of transmission
probabilities of any pair of incoming electron waves with
qA=q and qC=−q,

�tA�ee2 + �tA�he2 + �tC�ee2 + �tC�he2 =
1

cosh2�L��q − qpeak��
.

The total thermal current �per layer� also includes contribu-
tions from the nodal points B and D, and is—just as the
electrical conductivity—independent of the angle �,

Ithermal = L0G0T�T
W

L

vF
2 + v�

2

�vFv�

. �6.3�

As discussed in Sec. VIII A, the thermal conductivity �
= �Ithermal /�T��L /W� extracted from Eq. �6.3� coincides with
the bulk thermal conductivity of Ref. 22.

VII. SHOT NOISE

The zero-frequency noise power of time-dependent elec-
trical current fluctuations �I2�t� measured in contact number
2,

P22 = �
−�

�

dt�I2�0��I2�t� �7.1�

is given in terms of the transmission matrix elements by the
general expression30

P22 = G0eV
W

2�
� dq�tee2�1 − tee2� + the2�1 − the2�

+ 2the2tee2� . �7.2�

As with the conductance, we work in the linear-response
regime so the transmission matrix is to be evaluated at �
=0.

We restrict ourselves to the case of misaligned nodes and
substitute the expressions for t from Sec. V B. The integral
over q contains four separate contributions, from q near
nodes A, B, C, and D. The total result �per layer� is

P22 = G0eV
W

L

vF
2 + v�

2

�vFv�

�
12�2 − 	1�2�1 − 	2� + 8�1 − 	1�	2

2 + 	1
2	2

2

3�2 − 	1�2�2 − 	2�2 .

�7.3�

The Fano Factor F= P22 /eI2 is given by

F =
12�2 − 	1�2�1 − 	2� + 8�1 − 	1�	2

2 + 	1
2	2

2

3	1	2�2 − 	1��2 − 	2�
. �7.4�

In the ideal limit 	1 ,	2→1 we find a Fano factor F=1 /3,
three times smaller than the value F=1 associated with a

Poisson process. As discussed in the context of
graphene,3,14,15 this is the same one-third reduction as in a
diffusive metallic conductor and is a hallmark of pseudodif-
fusive transmission.

In the weak tunneling limit 	1 ,	2→0 the noise power
remains finite,

lim
	1,	2→0

P22 = G0eV
W

L

vF
2 + v�

2

�vFv�

�7.5�

while the electrical current vanishes, I2�	1	2→0. The elec-
trical current fluctuations therefore become large relative to
the time-averaged current in the presence of tunnel barriers.
This is discussed in the context of resonant tunneling through
midgap states in Sec. VIII B.

VIII. DISCUSSION

A. Comparison with bulk electrical and thermal conductivities

The electrical current I2 and thermal current Ithermal that
we have calculated describe transmission of electrons and
holes over a finite length L of a clean d-wave supercon-
ductor. Earlier work21,22 calculated the electrical and thermal
conductivities �0 and �0 of a disordered infinite system.
These are, in principle, different systems but we can still
compare them by formally converting the currents through
the finite system into bulk conductivities by means of �0
��I2 /V��L /W� and �0��Ithermal /�T��L /W�.

The thermal conductivity obtained in this way from the
finite-system thermal current �Eq. �6.3��,

�0 = L0G0T
vF

2 + v�
2

�vFv�

�8.1�

is the same as the bulk thermal conductivity of Durst and
Lee.22 The results for the electrical conductivity differ, how-
ever. The bulk result21,22

�0 = G0
vF

�v�

�8.2�

differs from the finite-system result �5.4�—even if we as-
sume ideal NS interfaces. The difference between the factors
vF /v� in Eq. �8.2� and �vF

2 +v�
2 � /vFv� in Eq. �5.4� is small in

practice �because vF�v�� but the difference does illustrate
that these are different systems.

B. Interpretation in terms of resonant tunneling through
midgap states

We have found that tunnel barriers at the NS interfaces
reduce the transmitted electrical current but not the thermal
current nor the electrical noise. This result has a natural in-
terpretation in terms of the midgap states at the NS inter-
faces. Midgap states are zero-energy edge states of the
d-wave superconductor, which exist at momentum q along
the edge if the order parameter has opposite sign at the two
intersections of the line of constant q with the Fermi
surface.28,29 The midgap states at the two NS interfaces have
a small overlap, and therefore acquire a nonzero energy
�Eedge �tunnel splitting�. Moreover, the coupling to the metal

PSEUDODIFFUSIVE TRANSMISSION OF NODAL DIRAC… PHYSICAL REVIEW B 80, 224517 �2009�

224517-7



electrodes at s=0,L introduces partial widths �E0 and �EL of
the midgap states �tunnel broadening�.

Tunneling through a pair of midgap states was studied in
Ref. 31, in the context of Majorana bound states �which are
a special type of nondegenerate midgap states�. We can com-
pare the transmission probabilities resulting from that work,

tee2 = teh2 = the2 = thh2 =
Eedge

2 �E0�EF

�Eedge
2 + �E0�EL�2 �8.3�

with the results from Sec. V B in the tunneling limit 	1 ,	2

1,

tee2 = teh2 = the2 = thh2 =
1

4 cosh2�L��q − qpeak��
.

�8.4�

We have defined

eL�qpeak =
1

2
		1	2. �8.5�

This comparison leads to the identification

Eedge

	�E0�EL

=
2eL�q

		1	2

. �8.6�

Resonant tunneling, with all transmission probabilities equal
to 1/4, occurs when q=qpeak, hence when Eedge=	�E0�EL
�tunnel splitting of the midgap states equal to tunnel broad-
ening�. Because transmission from electron to electron and
from electron to hole happens with the same probability �to
leading order in 	1 ,	2�, the transmitted electrical current
vanishes in the limit of small 	. The thermal current Ithermal
and electrical noise P22 remain finite because tee2 and the2
contribute with the same sign to these quantities.

This interpretation explains the finite small-	 limit for P22
and Ithermal but it does not explain why the thermal current
�Eq. �6.3�� turns out to be completely independent of the
values of 	1 and 	2. That remains a surprising result of our
calculation, for which we have no qualitative explanation.

C. Outlook

We have shown how ballistic transport through a
clean d-wave superconductor �such as single-crystal
YBa2Cu3O7−�� has features in common with graphene:1 a
pseudodiffusive 1 /L scaling of the electrical current trans-
mitted over a distance L and a 1/3 suppression of the elec-
trical shot noise with respect to the Poisson value of uncor-
related current pulses. These effects have been observed in
graphene13–15 and it would be interesting to search for them
in the high-Tc cuprates. The 1 /L scaling should persist, with
a modified slope, in the presence of tunnel barriers at the NS
interfaces, and in the case of the thermal current we find that
even the slope is independent of the tunnel barrier height.
Note that this research on analogies between graphene and
d-wave superconductors is distinct from other works, where
graphene and �s- or d-wave� superconductivity are combined
in a single setup.32

There are more areas of correspondence between massless
Dirac fermions in d-wave superconductors and in graphene,

in addition to the pseudodiffusive transport studied in this
work. We mention two such effects, as directions for future
research. �1� In graphene an electrostatic potential can dis-
place the Fermi level away from the Dirac point of vanishing
density of states. In the d-wave superconductor the supercur-
rent velocity vs enters into the Dirac equation �Eq. �2.2�� as a
scalar term ��0,33 and therefore has the same effect of dis-
placing the Dirac point relative to the Fermi level. There is
one curious difference with respect to graphene: the d-wave
superconductor has two pairs of valleys and the Dirac point
can be displaced independently in each pair �relative to the
same Fermi level�. With reference to Fig. 2, the component
of vs in the x direction acts on valleys at the nodal points A
and C while the component in the y direction acts on those at
B and D. �2� While the role of an electrostatic potential in
graphene is played by the supercurrent, an electric field in
the d-wave superconductor plays the role of a magnetic field
in graphene. If a sufficiently strong electric field could be
induced in a thin-film cuprate superconductor, it might be
possible to see effects analogous to the effects of Landau-
level quantization in graphene.34
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APPENDIX A: NS INTERFACE MATRIX

In Sec. III B we derived the most general form of the
transfer matrix of an NS interface, consistent with the re-
quirement of particle flux conservation. The result in Eq.
�3.6� has three undetermined parameters �x, �y, and �z. Here
we calculate the interface matrix by solving the Dirac equa-
tion in the interface layer and determine these unknown pa-

FIG. 2. Ellipsoidal equal-energy contours of low-energy excita-
tions in the Brillouin zone of a superconductor with dxy symmetry.
Long and short axes have ratio vF /v�. The contours are centered at
the four nodal points �solid dots�, where the order parameter van-
ishes on the Fermi surface. The normal n̂ to the NS interfaces is
indicated. The dashed line, displaced from the nearest nodal point
by q, indicates points of constant wave-vector component parallel
to the interface.
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rameters. The interface layer is the region where the order
parameter increases from 0 to its bulk value, over a healing
length l0 �which is typically of the same order of magnitude
as the coherence length �0�.

As discussed in Ref. 35, in order to preserve Hermiticity,
the Dirac equation �Eq. �2.2�� needs to be supplemented by
terms containing the spatial derivatives of v�,

− i�vF�z�x + v��x�y + ��yv���x/2� = � . �A1�

We assumed that the phase of � is constant and set it to 0
�without loss of generality�, thus v� is real throughout, and is
only a function of the distance s from the NS interface. An
eigenstate �s� of momentum q parallel to the NS interface
satisfies

�− iJ�s + J1q − iv�� sin����x/2��s� = ��s� �A2�

with the derivative of v� denoted by the shorthand v��
��sv�. Accordingly, the matrix A in Eq. �2.8� becomes s
dependent and gets a new term,

A�s� = A0�s� −
v��s�sin �

2v��s�2 ��yvF cos � − iv��s�sin �� . �A3�

Since ql0vFv� /v�
2 �q /kF
1 �in the relevant range of q’s

near the nodal point�, the integral of A0 over the interface
layer is 
1 and may be neglected. Then A�s1� commutes
with A�s2� for 0�s1 ,s2� l0, and therefore we can simply
integrate Eq. �2.8� over the interface layer,

MNS = exp
i�
0

l0

A�s�ds�
= exp
− i

2
�

0

tan � 1

1 + u2 ��y − iu�du�
=	vF cos �

v�

exp�− i��y/2� �A4�

with �=arctan��v� /vF�tan �� as defined in Eq. �3.4�. The
result agrees with Eq. �3.6� with �x=�y =�z=0 and vN
=vF cos �. The Fermi velocity mismatch contributes an ad-
ditional factor 	vN /vF to the interface matrix, and in addition
may cause internode scattering �as detailed in Sec. III C�.

APPENDIX B: FULL SCATTERING MATRIX

In Secs. IV and V we have calculated the 2�2 transmis-
sion matrix t, which is the quantity we need for the transport
properties considered. For reference, we give here the full
4�4 scattering matrix,

S = �r t�

t r�
� �B1�

containing the 2�2 transmission matrices t �from left to
right� and t� �from right to left�, as well as the reflection
matrices r �from left to left� and r� �from right to right�.
These matrices can be obtained from transfer matrix M by
constructing the four 2�2 subblocks Xij,

WMW† = �X11 X12

X21 X22
� �B2�

and then evaluating

r = − X22
−1X21, r� = X12X22

−1,

t† = X11
−1, t� = X22

−1, �B3�

cf. Eqs. �4.4� and �4.5�.
We restrict ourselves to �=0 and misaligned nodes. Near

node A we find the reflection matrices,

rA =
1

ZA
� − eL�qA	1 − 	1�2 − 	2� − i	1�eL�qA − 	2 sinh L�qA�

− i	1�eL�qA − 	2 cosh L�qA� − eL�qA	1 − 	1�2 − 	2�
� , �B4�

rA� =
1

ZA
� e−i��L�eL�qA	1 − 	2�2 − 	1� − i	2�eL�qA − 	1 cosh L�qA�

− i	2�eL�qA − 	1 sinh L�qA� ei��L�eL�qA	1 − 	2�2 − 	1�
� . �B5�

The transmission matrix tA is given by Eq. �5.5� and tA� =�ytA
†�y. The resulting scattering matrix �B1� is unitary, SS†=1, as it

should be.
Similarly, near node C we find tC given by Eq. �5.9�, tC� =�ytC

† �y, and the reflection matrices,

rC =
1

ZC
� − e−L�qC	1 − 	1�2 − 	2� − i	1�e−L�qC − 	2 cosh L�qC�

− i	1�e−L�qC + 	2 sinh L�qC� − e−L�qC	1 − 	1�2 − 	2�
� , �B6�

rC� =
1

ZC
� e−i��L�e−L�qC	1 − 	2�2 − 	1� − i	2�e−L�qC + 	1 sinh L�qC�

− i	2�e−L�qC − 	1 cosh L�qC� ei��L�e−L�qC	1 − 	2�2 − 	1�
� . �B7�
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APPENDIX C: CONDUCTANCE FOR ALIGNED NODAL
POINTS

1. Alignment of nodes A-C

For �
�0 /L the two nodal points A and C line

up with the normal to the NS interface while
nodes B and D remain misaligned. Restricting our-
selves again to �=0, we may put qA=qC=q, ��=0,

MA=MC, and L�=Lv� /vF�L0 in Eq. �4.6�. The result
is

tAC
† =

�	1	2�1/2

ZAC
� �1 + e2ikFL	1 − 	1

	1 − 	2�cosh L0q i�	1 − 	1 + e−2ikFL	1 − 	2�sinh L0q

− i�	1 − 	1 + e2ikFL	1 − 	2�sinh L0q �1 + e−2ikFL	1 − 	1
	1 − 	2�cosh L0q

� , �C1�

ZAC = 2	1 − 	1
	1 − 	2cos�2kFL� + 2 − 	1 − 	2 + 	1	2 cosh2 L0q . �C2�

The current I2
AC through the aligned nodes A and C follows from

I2
AC = G0V

W

2�
�

−�

�

dq�tee2 − the
2 � , �C3�

tee2 − the
2  =

2	1	2

�2 − 	1��2 − 	2� + 4	1 − 	1
	1 − 	2cos�2kFL� + 	1	2 cosh�2L0q�

. �C4�

For the total current I2 we add the contribution from the
�strongly� misaligned nodes B and D,

I2 = I2
AC + G0V

W

L

v�

�vF

	1

2 − 	1

	2

2 − 	2
. �C5�

As shown in Fig. 3, the current I2 oscillates as a function of

kFL, between minima I2
min at kFL=0�mod �� and maxima

I2
max at kFL=� /2�mod ��. �Similar oscillations were found in

Ref. 25.� Simple expressions for these two values follow for
the case 	1=	2�	 of equal tunnel barriers,

I2
min = G0V

W

L

	2

��2 − 	�2� vF

v�

arctanh �

�
+

v�

vF
� , �C6�

I2
max = G0V

W

L

1

�
� vF

v�

+
v�

vF

	2

�2 − 	�2� �C7�

with abbreviation �=2�2−	�−1	1−	. For 	=1 we recover

FIG. 3. Dependence on the separation L of the NS interfaces of
the current I2 into contact N2, for the interface orientation �=0 of
aligned nodes A and C. Calculated from Eqs. �C3�–�C5� for param-
eters 	1=	2=0.3 and vF /v�=10.

FIG. 4. Same as Fig. 2 but now for an angle �=� /4 between
the normal n̂ to the NS interface and the lines x=0 and y=0 of
vanishing order parameter. For this orientation the nodal points A-D
and B-C are pairwise aligned with n̂ �dashed lines� so that they are
pairwise coupled by a tunnel barrier at the interfaces.

FIG. 5. Same as Fig. 3 but now for an interface orientation �
=� /4 of pairwise aligned nodes A-D and B-C, calculated from Eq.
�C10� for parameters 	1=	2=0.3 and vF /v�=10.
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the ideal limit I2
min= I2

max=�idealVW /L. For 	
1 we have in-
stead I2

max=G0V�W /�L��vF /v�� and I2
min= I2

max�
1
4	2ln 	.

2. Alignment of nodes A-D and B-C

For �−� /4
�0 /L, nodal points A-D and B-C are pair-
wise aligned with the normal to the NS interface �see Fig. 4�.

The transmission matrix tAD through nodes A-D is given by
Eqs. �4.6� and �4.7� with MC replaced by MD. Similarly, for
the transmission matrix tBC through nodes B-C we should
replace MA by MB.

Considering first the transmission through nodes A-D, we
see from Eq. �3.15� that MD=MA

−1 at �=� /4 and qA=qD

�q. Restricting ourselves to �=0, we find

tAD
† =

2�	1	2�1/2

ei��/4�qA�ZAD
� �1 + ei��q�	1 − 	1

	1 − 	2�cosh L�q − ie−ikFL	2�	1 − 	2 − ei��q�	1 − 	1�sinh L�q

− i�ei��q�	1 − 	2 − 	1 − 	1�sinh L�q e−ikFL	2�ei��q� + 	1 − 	1
	1 − 	2�cosh L�q

� , �C8�

ZAD = 	1	2 + 4	1 − 	1
	1 − 	2 cos ��q� + �2 − 	1��2 − 	2�cosh 2L�q �C9�

with L�=2LvFv� / �vF
2 +v�

2 � and the auxiliary function ��q�=2Lq�vF
2 −v�

2 � / �vF
2 +v�

2 �+kFL	2.
The current I2

AD through the aligned nodes A and D follows from

I2
AD = G0V

W

2�
�

−�

�

dq�tee2 − the
2 � , �C10�

tee2 − the
2  = 2	1	2

�2 − 	1��2 − 	2� + �	1	2 + 4	1 − 	1
	1 − 	2cos ��q��cosh�2L�q�

�	1	2 + 4	1 − 	1
	1 − 	2cos ��q� + �2 − 	1��2 − 	2�cosh�2L�q��2

. �C11�

The contribution from the aligned nodes B and C is identical so the total current becomes I2=2I2
AD.

For ideal interfaces �	1=	2=1�, we recover the result I2=�idealVW /L. In the presence of tunnel barriers, I2 again oscillates
as a function of L, see Fig. 5.
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